
Reconfigurable model execution in the OpenMDAO framework

John T. Hwang *

NASA Glenn Research Center, 21000 Brookpark Rd, Cleveland, OH 44135
Peerless Technologies Corporation, 2300 National Rd, Beavercreek, OH 45324

NASA’s OpenMDAO framework facilitates constructing complex models and computing their deriva-
tives for multidisciplinary design optimization. Decomposing a model into components that follow a
prescribed interface enables OpenMDAO to assemble multidisciplinary derivatives from the compo-
nent derivatives using what amounts to the adjoint method, direct method, chain rule, global sensitiv-
ity equations, or any combination thereof, using the MAUD architecture. OpenMDAO also handles
the distribution of processors among the disciplines by hierarchically grouping the components, and
it automates the data transfer between components that are on different processors. These features
have made OpenMDAO useful for applications in aircraft design, satellite design, wind turbine de-
sign, and aircraft engine design, among others. This paper presents new algorithms for OpenMDAO
that enable reconfigurable model execution. This concept refers to dynamically changing, during
execution, one or more of: the variable sizes, solution algorithm, parallel load balancing, or set of
variables—i.e., adding and removing components, perhaps to switch to a higher-fidelity sub-model.
Any component can reconfigure at any point, even when running in parallel with other components,
and the reconfiguration algorithm presented here performs the synchronized updates to all other
components that are affected. A reconfigurable software framework for multidisciplinary design
optimization enables new adaptive solvers, adaptive parallelization, and new applications such as
gradient-based optimization with overset flow solvers and adaptive mesh refinement. Benchmark-
ing results demonstrate the time savings for reconfiguration compared to setting up the model again
from scratch, which can be significant in large-scale problems. Additionally, the new reconfigurabil-
ity feature is applied to a mission profile optimization problem for commercial aircraft where both
the parametrization of the mission profile and the time discretization are adaptively refined, resulting
in computational savings of roughly 10% and the elimination of oscillations in the optimized altitude
profile.

I. Introduction
Modern gradient-based optimization techniques enable engineers to optimize models with thousands of design

variables [1, 2, 3]. For optimizers based on sequential quadratic programming (SQP), the number of iterations required
to solve the optimization problem often scales better than linearly with the number of design variables. The adjoint
method yields further efficiency gains as it computes the derivatives required in each iteration at a fixed cost that does
not increase appreciably with the number of design variables. Therefore, pairing an SQP optimizer with the adjoint
method makes it feasible to optimize in, for instance, a ten-thousand-dimensional design space at the cost of running
the model only hundreds of times, in practice.

As models mature and optimization techniques improve, there is a push towards more disciplines and higher
model complexity to improve their predictive capabilities. In this context, higher complexity refers to having more
parts that are inter-connected. For instance, a single-discipline model may be complex because it contains an ordinary
differential equation (ODE), a surrogate model, and a system of algebraic equations—all of which are coupled. On the
other hand, a multidisciplinary model may contain straightforward blackbox sub-models, but in this case, the challenge
may come from data exchange between disciplines and resolving feedback loops between disciplines.

Given a model that is multidisciplinary, complex, or both, performing large-scale optimization adds an additional
challenge because the adjoint method is an invasive technique that requires extensive modification of the model,
unlike simpler methods for computing derivatives. This encourages striving for scalability and modularity, to ensure
the efficiency and maintainability of the code stay manageable as the number of disciplines and the complexity of the
model increases.

NASA’s OpenMDAO software framework is motivated by this goal of taking a modular approach to large-scale
optimization. OpenMDAO is a NASA-funded open-source framework for gradient-based multidisciplinary design op-
timization, written in Python [4]. There are many existing open-source and commercial frameworks that also seek to

*Research engineer (contractor at NASA GRC)

1 of 17

American Institute of Aeronautics and Astronautics

https://ntrs.nasa.gov/search.jsp?R=20170011291 2020-05-09T09:34:35+00:00Z

enable a modular approach to multidisciplinary design optimization: Phoenix Integration’s ModelCenter/CenterLink,
Dassault Systèmes’ Isight/SEE, Esteco’s modeFRONTIER [5], TechnoSoft’s AML suite, MathWorks’ MATLAB/Simulink,
Noesis Solutions’ Optimus, Vanderplaats’ VisualDOC [6], and SORCER [7]. However, OpenMDAO is unique be-
cause it is designed for gradient-based optimization—it facilitates efficient and accurate derivative computation using
methods such as the adjoint method. It does this by using the modular analysis and unified derivatives (MAUD)
architecture [8], a formulation that unifies all methods for computing derivatives using a single linear equation and
solves the multidisciplinary systems using a parallel, hierarchical approach. MAUD and OpenMDAO have been used
to solve design problems for wind turbines [9, 10, 11, 12], satellites [3], aircraft wings [13, 2, 14, 15], aircraft mission
and allocation [16, 17, 18, 2, 19], and aircraft engines [20, 21].

As is the case with other frameworks, OpenMDAO’s fundamental paradigm divides the model into components
(which can represent a discipline or one part of a discipline). The components are in turn grouped hierarchically, both
for convenience and for efficient execution. OpenMDAO is designed for parallel computing, so components can be
run in parallel themselves, or the model can be parallelized across components, which means different components
are assigned to different processors. OpenMDAO passes data between components, performing the necessary inter-
processor communication. A key source of efficiency is pre-computing several data structures during setup, including
these parallel communication patterns, so that operations carried out during execution are as efficient as possible.

This paper focuses on reformulating the core design and algorithms in OpenMDAO to enable dynamic reconfig-
uration. Reconfiguration refers to changing the model during execution—in the middle of converging the multidisci-
plinary system or at the start of each optimization iteration—and subsequently repeating the parts of the setup process
that must be updated. This term is also used in a different, but related context: reconfigurable engineering systems,
where, according to Ferguson et al. [22], the three motivating factors are multi-ability (performing different func-
tions at different times), evolution (morphing into unplanned configurations), and survivability (handling unexpected
failures). Here, only the model is reconfiguring, and not the engineering system.

Specifically, reconfigurability in this context allows one of four model properties to change in one or more compo-
nents: sizes of variables, the division of processors, the hierarchical grouping of components, and the set of variables
(i.e., adding or removing variables). The aim is to determine the correct sequence of ‘re-setup’ that must occur after
a component or a set of components reconfigure, to ensure that the rest of the model remains synchronized. For in-
stance, if component B depends on component A, and component A changes variable sizes while running in parallel
with component B, component B must be updated with the new information at the right time for the overall model to
remain correct and consistent. The secondary aim is to do this while minimizing the amount of setup that is repeated,
especially when a small part of the model reconfigures in a large, complex overall model.

Potential applications of reconfigurability include adaptive discretizations, adaptive solvers, and multi-fidelity ap-
proaches, among others. Problems with adaptive discretizations require changing variable sizes, which may occur
during a nonlinear system or at the start of each optimization iteration, e.g., to refine a mesh. Adaptive solvers would
not add or remove variables or change their sizes, but they could change the hierarchical grouping of components, the
processor distribution, or both. Multi-fidelity approaches would add and remove variables to switch been low- and
high-fidelity sub-models over the course of a simulation or optimization.

II. OpenMDAO
This section presents an overview of the mathematical formulation and core operations of OpenMDAO using a

simple example that will be used throughout. The intent is to provide a graceful introduction to OpenMDAO for readers
who have limited experience with it, and to provide context for the discussion on the methodology for reconfigurability.

A. A simple illustrative model
The example is a model with a single design variable, two coupled disciplines, and an objective function, as shown
in Tab. 1. In this example, the two disciplines explicitly define their state variables, u2 and u3, and each discipline
depends on the other, so we characterize them as coupled. The objective function, u4, depends on the two state
variables as well as the design variable, u1. The discussion that follows will reference this simple example to aid in
explaining of how OpenMDAO formulates models.

B. Monolithic formulation for derivative computation
OpenMDAO uses the modular analysis and unified derivatives (MAUD) architecture [8]. MAUD is a unique way of
formulating the model mathematically that simplifies derivative computation for the framework, and it also provides a
modular structure for applying nonlinear and linear solution techniques.

2 of 17

American Institute of Aeronautics and Astronautics

Component Outputs Inputs Equation Residual
Design variable: u1 u1 = 3 R1(u1, u2, u3, u4) = u1 − 3
First discipline: u2 u1, u3 u2 = 2u3 + u1 R2(u1, u2, u3, u4) = u2 − 2u3 − u1

Second discipline: u3 u1, u2 u3 = 2u2 + u1 R3(u1, u2, u3, u4) = u3 − 2u2 − u1

Objective: u4 u1, u2, u3 u4 = u1 + u2 + u3 R4(u1, u2, u3, u4) = u4 − u1 − u2 − u3

Table 1: The simple example used throughout Sec. II. The model has 4 components, including the design variable, two
coupled disciplines with one state variable each, and an objective function variable. The model is evaluated at a design
variable value of 3. OpenMDAO is unique because it uses the MAUD architecture [8], which treats design variables
as components and assigns residuals to each variable, allowing the formulation of the model as a nonlinear system
of equations. This unifies all methods for computing multidisciplinary derivatives, and it also unifies all solution
approaches as types of nonlinear solvers.

In addition to presenting the example, Tab. 1 also illustrates MAUD’s unique model formulation. The idea is to
treat all variables—design, state, objective, constraint, etc.—in the same way, as simply the output of a component.
This is why there is a component that ‘computes’ the design variable, which is not customary in other frameworks or
settings, and the variables are named (u1, u2, u3, u4) rather than, say, (x, y1, y2, f). The equation, u1 = 3, indicates
that the model is being evaluated with the design variable set to a value of 3. For each variable, a residual function
is defined so that solving the resulting n × n nonlinear system yields the result of running the model. In Tab. 1, it is
easy to see that driving the residuals to zero is equivalent to running this model—solving the coupled disciplines and
evaluating the objective would yield the same values of (u1, u2, u3, u4). In this manner, any model can be formulated
as a single nonlinear system,

R(u) = 0, (1)

where in this example, R = (R1, R2, R3, R4) and u = (u1, u2, u3, u4).
The primary benefit of formulating this nonlinear system is that it leads to an equation that unifies all the methods

for assembling the model derivatives, e.g., du4/du1, given user-provided or approximated component derivatives,
e.g., ∂R2/∂u3. Model derivatives are total derivatives that factor in the dependencies between components, while
component derivatives are partial derivatives that are local to the component. Methods for assembling the model
derivatives including the chain rule, the direct and adjoint methods, a coupled version of the chain rule (GSE2 [23]),
or hybrid methods that combine any of the above. All of these methods are unified by the following equation [24],
which is derived from the nonlinear system using the inverse function theorem [8]:

∂R

∂u

du

dr
= I =

∂R

∂u

T du

dr

T

, (2)

where ∂R/∂u is the matrix of consisting of component (partial) derivatives, and du/dr contains the model (total)
derivatives. This equation is called the unifying derivatives equation. Note that the r in du/dr is reflective of the fact
that du/dr = ∂R−1/∂r [8]; in this example, all four variables are explicitly deflined so the r is replaced with u in the
denominator in the equations that follow.

For the current example, the left equality of (2) expands as follows:

∂R1

∂u1

∂R1

∂u2

∂R1

∂u3

∂R1

∂u4
∂R2

∂u1

∂R2

∂u2

∂R2

∂u3

∂R2

∂u4
∂R3

∂u1

∂R3

∂u2

∂R3

∂u3

∂R3

∂u4
∂R4

∂u1

∂R4

∂u2

∂R4

∂u3

∂R4

∂u4

du1

du1

du1

du2

du1

du3

du1

du4
du2

du1

du2

du2

du2

du3

du2

du4
du3

du1

du3

du2

du3

du3

du3

du4
du4

du1

du4

du2

du4

du3

du4

du4

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3)

1 0 0 0
−1 1 −2 0
−1 −2 1 0
−1 −1 −1 1

1 0 0 0
du2

du1
1

du2

du3
0

du3

du1

du3

du2
1 0

du4

du1

du4

du2

du4

du3
1

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (4)

3 of 17

American Institute of Aeronautics and Astronautics

Therefore, the derivative of the objective with respect to the design variable, du4/du1, can be computed by assembling
the ∂R/∂u matrix and solving the linear system with the correct right-hand side.

A secondary outcome due to formulating the model as a nonlinear system is that solution approaches used to run
the model are also unified, under the umbrella of ‘nonlinear solvers’. In the current example, running the model would
conventionally consist in first assigning 3 to u1, then solving for u2 and u3 together since they are coupled, and finally
evaluating u4. This can be interpreted as a single iteration of the nonlinear block Gauss–Seidel method, where the
three blocks are (u1), (u2, u3), and (u4). While this is a trivially simple example, the interpretation of all solution
approaches as simply a nonlinear or linear solver simplifies the framework operations appreciably, in larger and more
complex models.

C. Parallel, hierarchical decomposition
While treating the full model monolithically has mathematical benefits, it can be inefficient with a naive approach.
For instance, it would not make sense to apply a Newton solver to the full nonlinear system with all 4 variables
included, in the simple example. Therefore, MAUD partitions the nonlinear system hierarchically, just as components
are commonly grouped hierarchically in traditional software frameworks. In OpenMDAO, there are Component and
Group classes, both of which inherit from a base System class.

Figure 1 shows the dependency graph and hierarchy tree for our simple example. Since components C2 and C3
are coupled, we assign them to group G2, and group G1 is the root group containing component C1, group G2, and
component C4. The solution approach would then be to run a single iteration of nonlinear block Gauss–Seidel in group
G1, and group G2 could either run a Newton solver, its own nonlinear Gauss–Seidel iteration, or any other custom or
OpenMDAO-provided nonlinear solver.

C1

C2

C3

C4

Dependency graph

C1 C2 C3 C4

G2

G1

Hierarchy tree

Figure 1: The dependency graph suggests an obvious way to group the components. Group G2 contains C2 and C3,
and at the top, group G1 contains C1, G2, and C4. Note: the dependency graph is the transpose of the Jacobian ∂R/∂u
because figures of this kind show feed-forward dependencies above the diagonal and feed-back dependencies below
the diagonal.

Each intermediate group in a model ‘owns’ or is responsible for a subset of the residuals in the global nonlinear
system. Group G2’s nonlinear system would be

R2(u1, u2, u3, u4) = 0
R3(u1, u2, u3, u4) = 0,

(5)

where the unknowns of the nonlinear system are u2 and u3, while the parameters are u1 and u4. Therefore, during
group G1’s nonlinear block Gauss–Seidel iteration, G2 would solve this nonlinear system when called to block-solve
itself.

The model can be run with distributed-memory parallel computing in one of two ways: parallel components or
parallel groups. Parallel components are those that are assigned multiple processors and distribute its output among
the processors. For instance, if the component has 10 processors and it computes a mesh of size 1000, each processor
would be responsible for computing 100 of the 1000 nodes in the mesh. In contrast, non-parallel components compute
the same output on all processors. Parallel groups are those that are assigned multiple processors and distribute its
processors among its children with no overlap, but not necessarily uniformly. If a parallel group has 4 processors and
two children, it could split the processors into 1 and 3, 2 and 2, or 3 and 1. Alternatively, a non-parallel group gives

4 of 17

American Institute of Aeronautics and Astronautics

all of its processors to all of its children, so both of the children would be assigned 4 processors in this case. Parallel
groups cannot run nonlinear or linear block Gauss–Seidel solvers; instead, they would use nonlinear or linear block
Jacobi solver, or a non-hierarchical solver such as Newton or a Krylov subspace method.

D. Data structures and setup
A core aspect of MAUD and OpenMDAO that leads to efficiency gains is the concatenation of variables into contigu-
ous arrays to enable faster vector operations in compiled languages, as shown in Fig. 2. As an example, vector addition
would consist in a single for loop over all entries of the vector in a compiled language such as C, rather than looping
over each variable in Python and performing separate additions. The latter is much slower if there are a large number
of variables because of the inefficiency of for loops in scripted languages. This approach does not compromise conve-
nience as components still access individual variables by their string names, so for example input u1 is accessed from
component C2 via inputs[’u 1’]. Internally, this is achieved by making inputs a dictionary where each key is
a variable name and the value is a NumPy view, i.e., a pointer onto a part of the larger vector. The vector attributes of
all groups and components are pointers to sub-vectors of the full underlying vector containing all variables from the
entire model.

C1

C2

C3

C4

r1

r1

r1

r1

u1

u1

u2

u1

u3

u2

u3

u1
u2
u3
u4

C2.
u1

C2.
u3

C3.
u1

C3.
u2

C4.
u1

C4.
u2

C4.
u3

C1.
u1

C2.
u2

C3.
u3

C4.
u4

C1.
r1

C2.
r2

C3.
r3

C4.
r4

Inputs vector

Outputs
vector

Residuals
vector

Figure 2: Variables are concatenated into arrays that are contiguous in memory to enable fast vector operations.

Data transfers are operations on these concatenated vectors that are also designed to avoid slow for loops in
Python. Transfers pass data from the output of one component to the input of another. In general, the source output
is not always on the same processor as the target input; alternatively, parts of the requested output can be on different
processors if the output is defined in a parallel component, as discussed in the previous section. During setup, the
framework determines the processor(s) and the indices of the data in the output vectors for each input. Moreover,
multiple transfers are performed simultaneously, partly for the speed of vector operations once again, but also to
maximize interprocessor communication efficiency. However, it is important to note that transfers occur in groups; in
particular, they occur in the lowest common ancestor, which is the lowest-level group containing both the input and
the output, as Fig. 3 shows.

The takeaway from this section is that OpenMDAO performs key setup operations to allocate these concatenated
vectors, assign to each system (i.e., group or component) a view into part of the concatenated vector, compute the dic-
tionaries to enable string access to individual variables in components, and compute the data transfer indices, including
any necessary parallel communication patterns. This setup time can be significant (on the order of minutes) in large
models with hundreds of variables and processors, e.g., parallel aircraft allocation-mission-design optimization [2].
Updating and re-computing the setup operations after reconfiguration is the focus of the reconfiguration methodology
presented in this paper, and this is discussed in the next section.

5 of 17

American Institute of Aeronautics and Astronautics

C1 C2 C3 C4

G2

G1

u1 u2 u3 u4
u1, u3 u1, u2 u1, u2, u3

C1 C2 C3 C4

G2

G1

u1 u2 u3 u4
u1, u3 u1, u2 u1, u2, u3

C1 C2 C3 C4

G2

G1

u1 u2 u3 u4
u1, u3 u1, u2 u1, u2, u3

Data transfer for C3.u1 Data transfer for C3.u2

Figure 3: Transfers are performed by the lowest common ancestor for the input and source output. For instance, the
C1.u1-to-C3.u1 transfer is performed by group G1, while the C2.u2-to-C3.u2 transfer is performed by group G2.

III. Reconfigurability
This section discusses the motivation and methodology for reconfigurability, and presents benchmarking results

for reconfiguration setup. The primary goal for the reconfiguration methodology is to ensure the correct behavior
and timing of reconfiguration operations, especially when an intermediate group or component reconfigures, and the
secondary goal is minimizing the setup operations that must be repeated when a small part of the model changes.

A. Motivation and applications
Fundamentally, reconfiguration refers to changing one of four model properties during execution: variable sizes, the
processor distribution, the hierarchical grouping of components, and the set of variables (i.e., adding or removing
variables). More than one of these four can change simultaneously, and in fact, changing the hierarchical grouping
changes the processor distribution in parallel groups, which in turn changes local variable sizes in parallel components.
There are other aspects of the model that may change during execution, e.g., changing solvers, changing the finite-
difference step size, convergence tolerance, etc. However, these changes amount to only logistical details and do
not present the same technical challenges as the four aforementioned properties, which affect the dependency graph,
hierarchy tree, or both.

Problems and applications that motivate reconfiguration are those in which building the model again from scratch
and performing a full setup is not feasible or desirable. In parallel models, reconfiguration may occur on a subset
of the processors; however, the full setup requires all processors to participate. Similarly, reconfiguration may occur
in an intermediate group or a component multiple times in a solver iteration before returning to the root group, so
waiting until then to perform a full setup would be too late. Even if neither of these cases applies, a full setup may
be undesirable in problems in which a small part of a large model reconfigures, as the impact of the change would be
small, and most of the setup would be unnecessary to repeat.

1. VARIABLE SIZES Applications for reconfiguring variable sizes include adaptive time-stepping, adaptive mesh
refinement, and adaptive parametrizations. Adaptive time-stepping in OpenMDAO requires reconfigurability because
the variable size for the time-series variable changes each time the time-stepping ordinary differential equation (ODE)
solver is called. Adaptive mesh refinement may occur at the start of each optimization iteration or in the middle of
running the model, in which case a full setup is not possible. Even if it occurs at the start of the optimization iteration,
the impact of the change may be limited to the functionals that are computed on the mesh, making a full setup wasteful,
which is why a reconfiguration setup algorithm is desirable.

2. PROCESSOR DISTRIBUTION Applications for adaptive processor distributions involve models with parallel
groups. An example is aerostructural analysis consisting of high-fidelity computational fluid dynamics (CFD) and
finite element analysis (FEA) solvers. If both solvers are flexible with respect to the number of processors, it can be
beneficial to adjust the division of processors based on each solver’s performance. Given that CFD solvers are nonlin-
ear (and thus may require a startup sequence) and FEA solvers are often sufficiently accurate with a linear formulation,
it would make sense, for instance, to allocate more processors to the CFD solver early on in the optimization when
there are large design changes. Later, the algorithm would assign a more equal distribution of processors, closer to

6 of 17

American Institute of Aeronautics and Astronautics

optimization convergence, because solving the coupled Newton system would likely dominate the model analysis time
at that point. Alternatively, the solution algorithm in this or another application could recompute the processor distri-
bution each time the model evaluates, based on how much time each discipline required in the previous optimization
iteration.

3. HIERARCHICAL GROUPING Most applications for changing the hierarchy tree dynamically involve adaptive
solvers. In many problems, groups can benefit from starting with a nonlinear block Gauss–Seidel then switching to a
coupled Newton approach. The former provides globalization and fast convergence in weakly coupled problems [25],
while the latter provides fast convergence when given a good starting point. An adaptive solver may also determine
optimal clusters of components and add groups dynamically, to enable faster block solution approaches.

4. ADDING AND REMOVING VARIABLES This last type of reconfiguration involves adding and removing vari-
ables and potentially adding and removing components. One application is shape optimization involving large design
changes, e.g., overset CFD optimization. Since overset CFD involves a finite number of sub-meshes based on inter-
sections between geometric objects, sub-meshes could appear and disappear when large design changes are permitted.
Another application is multi-fidelity optimization; switching from a low-fidelity model to a higher fidelity model
during the optimization would involve entire components and variables being removed and added.

B. Methodology
When a component or group declares that it wants to change its variables’ sizes, processor distribution, etc., the
‘reconfiguration’ operation that OpenMDAO must run is a subset of the setup process. OpenMDAO’s setup process
initializes solvers, assembles lists of variable names, and computes several other data structures that describe the
model. However, the two most important parts of setup are allocating the concatenated vectors shown in Fig. 2 and
computing the transfer information. Transfer information consists of the indices of the source output vector and the
indices of the target input vector along with the processors that are involved in the transfer. The reconfiguration setup
operation repeats many of the same operations performed in the tradition setup process, which is performed at the
beginning of every OpenMDAO script. However, reconfiguration repeats only the parts that must be updated, and it
runs in multiple stages, which are described in this section.

The reconfiguration methodology consists of 3 types of setup operations: full, reconfiguration, and update setup.
Full setup is the normal setup operation that must always be performed prior to running any OpenMDAO model.
It must always be called from the top-level group. Reconfiguration setup is called by the group or component that
initiates reconfiguration, and update setup is called by all ancestors (i.e., all groups containing the initiating group
or component) when their descendants are finished running their Gauss–Seidel or Jacobi iterations and the call stack
passes the baton back to the ancestor.

Tab. 2 presents the specific functions of each operation. Reconfiguration setup resizes the vectors rather than
allocating new vectors, but is otherwise identical to full setup. Update setup does not recurse into its subsystems
except to initialize the vector views that are discussed in Sec. II.D.

Setup operation Initializes variable data Initializes vectors Initializes transfers Initializes solvers, derivs.
Full Yes, recursively Allocates vectors Yes, recursively Yes, recursively
Reconfiguration Yes, recursively Resizes vectors Yes, recursively Yes, recursively
Update Yes; not recursively Updates views Yes; not recursively Yes; not recursively

Table 2: Description of the setup operations. The last column includes nonlinear solvers, linear solvers, finite-
difference approximations, and Jacobian matrices.

Figure 4 illustrates the sequence of reconfiguration and update setup via an example. In the model, Group 4 is
the one initiating reconfiguration to change variable sizes, hierarchy, processor distribution, its set of variables, or
any combination thereof. It recurses into Group 5 and Components 1, 2, and 3, and performs effectively a full setup,
other than resizing instead of allocating vectors so that the current-iteration values from Components 4, 5, and 6 are
not lost. Subsequently, once Group 4 and Component 4 complete execution, Group 2 performs an update setup, after
detecting that Group 4 has reconfigured. During Group 2’s update setup, it is not necessary to recurse into Component
4 since it has not changed; only the vector views must be re-initialized since all indices would have shifted if Group
4 changed variable sizes. Similarly, once Group 2 and Group 3 complete execution, Group 1 performs an update

7 of 17

American Institute of Aeronautics and Astronautics

setup, after detecting that Group 2 has changed. Again, during Group 1’s update setup, a full recursion into Group 3,
Component 4, and Component 6 is unnecessary since their variable names, sizes, etc. are still up-to-date. Recursion is
only performed to update their vector views in case the reconfiguration in Group 4 involved changes in variable sizes.

Component 1

Component 2

Group 4

Component 3

Group 2

Group 5

Component 4

Group 1

Group 3

Component 5 Component 6

1: Reconfiguration setup
initiated in group 4

1: Reconfiguration setup
involves full recursion into
subsystems

2: Update setup
called in group 2

3: Update setup
called in group 1 2, 3: Update setup

involves partial recursion
into subsystems

Figure 4: Reconfiguration sequence in an example model. Group 4 is assumed to change variable sizes, hierarchy,
processor distribution, or set of variables.

Algorithms 1 and 2 present the pseudocode for the nonlinear block Gauss–Seidel and Jacobi solvers with recon-
figuration incorporated. The two solvers are presented as methods on the System class, which is the base class for
Group and Component. In both cases, the first step is to check if the current group wants to reconfigure. If so, a re-
configuration setup is triggered and a flag is set to inform the immediate parent group later that it will need to update.
The Gauss–Seidel iteration loops over subsystems, and for each subsystem, it performs a transfer to pass data from
the outputs of all other subsystems to the relevant inputs of the subsystem, before calling the subsystem to solve its
nonlinear system. Next, an update setup is performed if the subsystem has reconfigured, in which case the system’s
own reconfigured flag is turned on. For Jacobi, a single transfer is first performed to pass data from the outputs of
all subsystems to the inputs of all subsystems at once, before all subsystems solve their nonlinear systems. Next, an
update setup is performed if any subsystem has reconfigured, and if so, the system’s own reconfigured flag is turned
on. For groups whose subsystems are sequentially dependent on each other or are fully decoupled, it is sufficient to
run a single iteration of this Gauss–Seidel (Alg. 1) or Jacobi (Alg. 2) algorithm, respectively, and the reconfiguration
operations would work the same way. Algorithms for reconfigurable linear block Gauss–Seidel and Jacobi are not
presented here because reconfiguration is not permitted during a linear solution.

Algorithm 2 handles the synchronization that is required when reconfiguration occurs in a group or component
while running in parallel with other groups or components. If a model is run with n processors in total, and the recon-
figuring system has m processors where m < n, this means that at least one of the ancestor groups is a parallel group.
Without loss of generality, let us assume that the immediate parent is the parallel group, there is one other component
within that immediate parent called Component B, and the reconfiguring system is a component called Component A.
The challenge is that Component B continues to execute in parallel while Component A while reconfigures, perhaps
even multiple times in a row, despite the fact that Component B might depend on Component A. As long as the vari-
able in Component A that Component B depends on does not disappear, the reconfiguration can be valid, even if the
variable is allocated on different processors post-reconfiguration. Algorithm 2 handles this situation by synchronizing
after the for loop in line 8. By the time line 11 is reached, all subsystems—Components A and B in this case—have
completed their execution, and if any of them has reconfigured, update setup can be performed since all processors of
the current system are synchronized. Prior to that, in line 9, Component B continues to run with the old values of the
variable from Component A that it has as an input. The new values are not needed until the next transfer in line 7 of
the next iteration, but prior to that, update setup is performed in line 12, if necessary. The same logic and algorithm

8 of 17

American Institute of Aeronautics and Astronautics

work recursively if multiple ancestors of a reconfiguring system are parallel groups.

Algorithm 1 Nonlinear block Gauss–Seidel with reconfiguration

1: function SOLVE NONLINEAR BLOCK GS(self) . This is a method on System (Group or Component)
2: if self.reconfigure() then . Check if the current system wants to reconfigure
3: self.reconfiguration setup()
4: self.has reconfigured← True . Flags to the parent group to update
5: end if
6: while Not converged and not out of iterations do
7: for all subsys in self.subsystems do
8: self.transfer(subsys) . Transfer inputs to subsys only
9: subsys.solve nonlinear()

10: if subsys.has reconfigured then . Check if subsys has reconfigured
11: self.update setup()
12: self.has reconfigured← True . Flags to the parent group to update
13: subsys.has reconfigured← False
14: end if
15: end for
16: end while
17: end function

Algorithm 2 Nonlinear block Jacobi with reconfiguration

1: function SOLVE NONLINEAR BLOCK JACOBI(self) . This is a method on System (Group or Component)
2: if self.reconfigure() then . Check if the current system wants to reconfigure
3: self.reconfiguration setup()
4: self.has reconfigured← True . Flags to the parent group to update
5: end if
6: while Not converged and not out of iterations do
7: self.transfer() . Transfer inputs to all subsystems only
8: for all subsys in self.local subsystems do . Only the subsystems on this processor
9: subsys.solve nonlinear()

10: end for
11: if subsys.has reconfigured for any subsys on any proc. then . Check if any subsys has reconfigured
12: self.update setup()
13: self.has reconfigured← True . Flags to the parent group to update
14: end if
15: for all subsys in self.local subsystems do . Only the subsystems on this processor
16: subsys.has reconfigured← False
17: end for
18: end while
19: end function

C. Benchmarking results
As stated in the introduction, the primary need for the reconfigurability feature is to enable any component or group to
change immediately during a nonlinear solution without waiting to return to the top-level group, where all processors
are available and all parts of the model are known. A secondary motivation for reconfigurability is to avoid repeating
the full set of setup operations when only a small part of the model changes. This section presents timings for full
and reconfiguration setup, to address the secondary motivation and explore how much efficiency is gained with the
methodology presented in this paper. Setup times are typically not noticeable in small- and medium-sized problems
but they can be on the order of minutes in large, parallel models, and small differences in time can magnify over the
course of multiple reconfigurations in a simulation or multiple simulations within an optimization.

The benchmarking results are generated on a scalable toy problem. The root (top-level) group contains a com-
ponent that reconfigures and a group that contains an variable number of components. All components compute a

9 of 17

American Institute of Aeronautics and Astronautics

single output variable, the size of which can be varied, and the number of inputs is controlled by a sparsity parameter.
Therefore, there are three parameters in total—number of components, sparsity parameter, and variable size—and the
first two parameters can be visualized by referring to Fig. 5.

The plots in Fig. 5 compare the full setup and reconfiguration time (reconfiguration setup and update setup com-
bined) versus number of components. The curves are generated for variable sizes of 1 and 100 and sparsity parameters
of 1 and 10. We can see that in all cases, reconfiguration is faster than full setup by a factor of roughly 4, and more
significantly, the gap grows as the problem becomes larger. Although one might expect the factor to be the number of
components, savings to this extent are not possible because of the update setup that is performed in the top-level group
and the partial recursion into all components in the model. Note that these results are generated with a preliminary,
unreleased version of OpenMDAO v2, so the factor and absolute setup times are likely to change prior to release of
v2. Unsurprisingly, sparsity has a large effect on setup time, but variable size has a neglible effect, likely due to setup
operation times being dominated by Python-level operations rather than vector operations.

IV. Application: adaptive refinement
This section presents an application of reconfiguration in an aircraft mission optimization problem. In this problem,

reconfiguration is used to adaptively refine the parametrization and discretization in time with the goal of reducing the
required number of optimization iterations.

A. The aircraft mission design problem
The mission analysis model [16, 2] is multidisciplinary; it incorporates aircraft aerodynamics, propulsion, the equa-
tions of motion over the mission profile, and atmospherics sub-models. It uses surrogate models for the aerodynamics
and propulsion, and solves an ODE to compute the fuel weight profile from the fuel burn rate. There is coupling
because the aircraft weight determines the lift it requires, which determine its drag, required thrust, and resulting fuel
consumption, which in turn affects the aircraft weight. The dependency graph in Fig. 6 demonstrates the complexity
of the model, which is why a modular implementation in OpenMDAO is necessary given that derivatives are computed
using the adjoint method.

The mission optimization problem is posed as follows. The objective function is fuel burn, and the design variables
are the cruise Mach number and the parametrized altitude profile variables. The constraints enforce minimum and
maximum slopes for each point of the altitude profile, as well as minimum and maximum thrust over the profile.
The thrust constraints are aggregated using Kreisselmeier–Steinhauser functionals [26] because they are nonlinear
functions of the design variables, and thus explicit enforcement of the constraint at each discretization point would
require computing the derivatives of each, which can be very expensive even with the adjoint method.

The altitude profile is parametrized using 4th order B-splines with open uniform knot vectors. The number of
B-spline control points is nc, and the number of discretization points is np. B-splines have the effect of smoothing
gradients for shape or curve optimization, so as a rule of thumb, np = 4nc is used given a desired nc. The optimization
problem is summarized below:

minimize fuel burn
with respect to cruise Mach number 1

altitude profile nc

subject to minimum slope constraints np

maximum slope constraints np

aggregated minimum thrust constraint 1
aggregated maximum thrust constraint 1.

ENABLING REFINEMENT WITH A FIXED OPTIMIZATION PROBLEM The optimization problem is solved using
SNOPT [27], a large-scale sparse SQP algorithm for nonlinear constrained optimization problems. As with most
existing optimizers, SNOPT does not allow for changing the design variables or constraints. This poses a challenge
for performing refinement because changing nc would change the number of design variables, and changing np would
change the number of constraints. This is a universal problem that is always present in adaptive refinement applica-
tions, and it must be overcome to be able to take advantage of reconfigurability in shape or curve optimization.

The solution is a bi-level parametrization and the use of two discretizations of the curve. First, let us introduce
two new variables, nc̄ and np̄. We shall evaluate a B-spline with nc control points at nc̄ points, then evaluate another
B-spline with nc̄ control points at np and np̄ points. Let Bc̄ be an nc̄ × nc matrix representing the evaluation of a

10 of 17

American Institute of Aeronautics and Astronautics

OpenMDAO Partition Tree and N^2 diagram.
! " # $ % % & & ' () * + ,

 -

root

reconf reconf:0

group

comp0 comp0:0

comp1 comp1:0

comp2 comp2:0

comp3 comp3:0

comp4 comp4:0

comp5 comp5:0

comp6 comp6:0

comp7 comp7:0

comp8 comp8:0

comp9 comp9:0

comp10 comp10:0

comp11 comp11:0

comp12 comp12:0

comp13 comp13:0

comp14 comp14:0

comp15 comp15:0

comp16 comp16:0

comp17 comp17:0

comp18 comp18:0

comp19 comp19:0

Connections:

. / 0

20 components; sparsity parameter = 1

OpenMDAO Partition Tree and N^2 diagram.
! " # $ % % & & ' () * + ,

 -

root

reconf reconf:0

group

comp0 comp0:0

comp1 comp1:0

comp2 comp2:0

comp3 comp3:0

comp4 comp4:0

comp5 comp5:0

comp6 comp6:0

comp7 comp7:0

comp8 comp8:0

comp9 comp9:0

comp10 comp10:0

comp11 comp11:0

comp12 comp12:0

comp13 comp13:0

comp14 comp14:0

comp15 comp15:0

comp16 comp16:0

comp17 comp17:0

comp18 comp18:0

comp19 comp19:0

Connections:

. / 0

20 components; sparsity parameter = 10

OpenMDAO Partition Tree and N^2 diagram.
! " # $ % % & & ' () * + ,

 -

root

reconfreconf:0

group

comp0comp0:0comp1comp1:0comp2comp2:0comp3comp3:0comp4comp4:0comp5comp5:0comp6comp6:0comp7comp7:0comp8comp8:0comp9comp9:0comp10comp10:0comp11comp11:0comp12comp12:0comp13comp13:0comp14comp14:0comp15comp15:0comp16comp16:0comp17comp17:0comp18comp18:0comp19comp19:0comp20comp20:0comp21comp21:0comp22comp22:0comp23comp23:0comp24comp24:0comp25comp25:0comp26comp26:0comp27comp27:0comp28comp28:0comp29comp29:0comp30comp30:0comp31comp31:0comp32comp32:0comp33comp33:0comp34comp34:0comp35comp35:0comp36comp36:0comp37comp37:0comp38comp38:0comp39comp39:0comp40comp40:0comp41comp41:0comp42comp42:0comp43comp43:0comp44comp44:0comp45comp45:0comp46comp46:0comp47comp47:0comp48comp48:0comp49comp49:0comp50comp50:0comp51comp51:0comp52comp52:0comp53comp53:0comp54comp54:0comp55comp55:0comp56comp56:0comp57comp57:0comp58comp58:0comp59comp59:0comp60comp60:0comp61comp61:0comp62comp62:0comp63comp63:0comp64comp64:0comp65comp65:0comp66comp66:0comp67comp67:0comp68comp68:0comp69comp69:0comp70comp70:0comp71comp71:0comp72comp72:0comp73comp73:0comp74comp74:0comp75comp75:0comp76comp76:0comp77comp77:0comp78comp78:0comp79comp79:0comp80comp80:0comp81comp81:0comp82comp82:0comp83comp83:0comp84comp84:0comp85comp85:0comp86comp86:0comp87comp87:0comp88comp88:0comp89comp89:0comp90comp90:0comp91comp91:0comp92comp92:0comp93comp93:0comp94comp94:0comp95comp95:0comp96comp96:0comp97comp97:0comp98comp98:0comp99comp99:0
Connections:

. / 0

100 components; sparsity parameter = 1

OpenMDAO Partition Tree and N^2 diagram.
! " # $ % % & & ' () * + ,

 -

root

reconfreconf:0

group

comp0comp0:0comp1comp1:0comp2comp2:0comp3comp3:0comp4comp4:0comp5comp5:0comp6comp6:0comp7comp7:0comp8comp8:0comp9comp9:0comp10comp10:0comp11comp11:0comp12comp12:0comp13comp13:0comp14comp14:0comp15comp15:0comp16comp16:0comp17comp17:0comp18comp18:0comp19comp19:0comp20comp20:0comp21comp21:0comp22comp22:0comp23comp23:0comp24comp24:0comp25comp25:0comp26comp26:0comp27comp27:0comp28comp28:0comp29comp29:0comp30comp30:0comp31comp31:0comp32comp32:0comp33comp33:0comp34comp34:0comp35comp35:0comp36comp36:0comp37comp37:0comp38comp38:0comp39comp39:0comp40comp40:0comp41comp41:0comp42comp42:0comp43comp43:0comp44comp44:0comp45comp45:0comp46comp46:0comp47comp47:0comp48comp48:0comp49comp49:0comp50comp50:0comp51comp51:0comp52comp52:0comp53comp53:0comp54comp54:0comp55comp55:0comp56comp56:0comp57comp57:0comp58comp58:0comp59comp59:0comp60comp60:0comp61comp61:0comp62comp62:0comp63comp63:0comp64comp64:0comp65comp65:0comp66comp66:0comp67comp67:0comp68comp68:0comp69comp69:0comp70comp70:0comp71comp71:0comp72comp72:0comp73comp73:0comp74comp74:0comp75comp75:0comp76comp76:0comp77comp77:0comp78comp78:0comp79comp79:0comp80comp80:0comp81comp81:0comp82comp82:0comp83comp83:0comp84comp84:0comp85comp85:0comp86comp86:0comp87comp87:0comp88comp88:0comp89comp89:0comp90comp90:0comp91comp91:0comp92comp92:0comp93comp93:0comp94comp94:0comp95comp95:0comp96comp96:0comp97comp97:0comp98comp98:0comp99comp99:0
Connections:

. / 0

100 components; sparsity parameter = 10

20 30 40 50 60 70 80 90 100
Number of components

0.0

0.1

0.2

0.3

0.4

0.5

S
e
tu

p
 t

im
e
 (

s)

Variable size = 1; sparsity parameter = 1

full
reconfiguration

20 30 40 50 60 70 80 90 100
Number of components

0.0

0.5

1.0

1.5

2.0

2.5

S
e
tu

p
 t

im
e
 (

s)

Variable size = 1; sparsity parameter = 10

full
reconfiguration

20 30 40 50 60 70 80 90 100
Number of components

0.0

0.1

0.2

0.3

0.4

0.5

S
e
tu

p
 t

im
e
 (

s)

Variable size = 100; sparsity parameter = 1

full
reconfiguration

20 30 40 50 60 70 80 90 100
Number of components

0.0

0.5

1.0

1.5

2.0

2.5

S
e
tu

p
 t

im
e
 (

s)

Variable size = 100; sparsity parameter = 10

full
reconfiguration

Figure 5: Comparison of full setup and reconfiguration times for varying number of components, degree of spar-
sity, and variable sizes. Note: ‘reconfiguration’ includes both reconfiguration setup and update setup. We see that
reconfiguration is consistently about 4 times faster, and the gap grows with the size of the model.

11 of 17

American Institute of Aeronautics and Astronautics

OpenMDAO Partition Tree and N^2 diagram.
! " # $ % % & & ' () * + ,

 -

root

comp_pax_flt pax_flt

msn_group mission_0

inputs_comp

eta
x_1e3_km_cp

h_km_cp
M0

bsplines

comp_x x_1e3_km
comp_h h_km

comp_x_con x_1e3_km_con
comp_h_con h_km_con

comp_x_smooth x_1e3_km_smooth
comp_h_smooth h_km_smooth

atmos

comp_temp temp_1e2_K
comp_pressure p_1e6_Pa

comp_density rho
comp_speed_sound a_1e2_ms

comp_mach M
comp_speed v_1e2_ms

preprocess

comp_dh_smooth dh_dx_smooth
comp_dh2_smooth d2h_dx2_smooth
comp_gamma_con gamma_con

comp_gamma gamma

comp_vel v_ms_x
v_ms_y

comp_dvx dvx_dx
comp_dvy dvy_dx

comp_accel a_ms2_x
a_ms2_y

comp_max_thrust maxT_1e6_N

coupled_analysis

comp_vertical_eom CL

comp_aero CD
alpha

comp_horizontal_eom CT
comp_tau tau

comp_prop SFC_1em6_NNs
comp_delta_fuel dWfuel_1e6_N

comp_fuel Wfuel_1e6_N

functionals

KSmin Tmin
KSmax Tmax

fuelburn fuelburn_1e6_N
blocktime blocktime_hr
objective objective

Connections:

. / 0

Figure 6: Dependency graph for the mission analysis model.

B-spline with nc control points at nc̄ uniformly-spaced points. Let Bp and Bp̄ be np × nc̄ and np̄ × nc̄ matrices
representing the evaluation of a B-spline with nc̄ control points at np and np̄ uniformly-spaced points, respectively. If
c ∈ Rnc is the vector of altitude design variables, the discretized altitude profile used for the mission analysis is p̄ and
the discretized altitude profile used for evaluating the slope constraints is p, then we have

p = BpBc̄c (6)
p̄ = Bp̄Bc̄c. (7)

With this formulation, c̄ can be arbitrarily varied to control the resolution of the parametrization and p̄ can be
arbirarily varied to control the resolution of the discretization. Meanwhile, c and p can be held fixed to ensure that
the number of design variables and the number of constraints do not change. Normally, c̄ < c, therefore, the Hessian
matrix is singular with respect to the nc control points, which can cause failure in some optimizers. Moreover, it can
result in oscillations in the nc control points despite a smooth profile because of the additional degrees of freedom
that have no impact on the altitude profile. To address both of these issuues, a penalty term is added to the objective
function to minimize the integral of the second derivative of the altitude profile given by a direct c to p B-spline
map. This approach is used to adaptively refine the parametrization and discretization in the mission model, while
maintaining a fixed optimization problem.

RESULTS Four optimization problems are solved: one with no refinement, and one with one, two, and four re-
finements. The optimization problem with no refinement does not use the bi-level parametrization, and it maps the nc

control points directly to the np discretization points. The four optimization problems are summarized in the following
table:

Problem nc nc̄ np̄ np

No refinement 100 - - 400
One refinement 100 40→ 100 160→ 400 400
Two refinements 100 20→ 60→ 100 80→ 240→ 400 400
Four refinements 100 20→ 40→ 60→ 80→ 100 80→ 160→ 240→ 320→ 400 400

In all 4 problems, refinement occurs when the optimality and feasibility are within a factor of 10 of the optimization
convergence tolerances, which are 1e-5 for optimality and 1e-6 for feasibility. Figure 7 shows the effect of refinement

12 of 17

American Institute of Aeronautics and Astronautics

on the optimization convergence metrics. As one would expect, there is an immediate increase in optimality and fea-
sibility after refinement, followed by rapid convergence. Optimization with one refinement is faster than optimization
with no refinement, despite the fact that they have roughly the same number of function evaluations, because in the
former case, most of the iterations are performed with the coarse discretization, which runs faster. Optimization with
two refinements takes about 25% more iterations, but this is offset by the cheaper time per evaluation due to the coarser
discretizations. The clear trend in this limited set of results is that fewer refinements is more efficient.

Another benefit for the adaptive refinement approach is evident from Fig 8. The optimization without refinement
converges to a solution with oscillations, even though the convergence tolerances are the same across all problems.
This is not atypical in fine-resolution curve or shape optimization problems, and it is a product of low sensitivity to
the shape near the optimum and having a large number of design variables. However, all profiles found via optimiza-
tion with refinement do not have oscillations. An advantage of converging first to a partial optimum with a coarser
parametrization is that the high-dimensional optimization is given a good starting point that is less likely to have
oscillations.

50 100 150 200 250
10−11

10−9

10−7

10−5

10−3

10−1

Function evaluations

C
o
n
ve
rg
en
ce

m
et
ri
c

Optimization with no refinement (520 s)

50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

Function evaluations

C
on

ve
rg
en
ce

m
et
ri
c

Optimization with one refinement (470 s)

50 100 150 200 250 300 350

10−10

10−8

10−6

10−4

10−2

Function evaluations

C
o
n
ve
rg
en

ce
m
et
ri
c

Optimization with two refinements (550 s)

100 200 300 400

10−10

10−8

10−6

10−4

10−2

Function evaluations

C
on

ve
rg
en
ce

m
et
ri
c

Optimization with four refinements (720 s)

Figure 7: Optimization convergence histories. Optimization with one refinement takes has roughly the same compu-
tational cost as the optimization with no refinement.

More studies are necessary to make definitive conclusions on when adaptive refinement is beneficial and how many
are optimal, but these results show that adaptive refinement can lead to a better result in less time in some cases. A
key advantage is that the bi-level parametrization and dual discretization approach enable adaptive refinement to be
implemented in curve or shape optimization problems without a specialized optimizer, since the optimization problem
constant through refinement.

13 of 17

American Institute of Aeronautics and Astronautics

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

Optimization with no refinement

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

Optimization with one refinement

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

Optimization with two refinements

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

Optimization with four refinements

Figure 8: Optimized altitude profiles with the nc control points shown in green. All optimizations with refinement
converge to profiles without oscillations.

14 of 17

American Institute of Aeronautics and Astronautics

V. Conclusion
OpenMDAO is a NASA-developed software framework that facilitates the implementation of multidisciplinary

or complex models as a set of components grouped hierarchically, and aids in computing the derivatives needed for
optimization. OpenMDAO controls the execution of the components, performs parallel data transfers between com-
ponents, and computes total derivatives for the full model given partial derivatives for each component. The required
data structures and parallel communication patterns are pre-computed during an initial setup operation, which can take
as long as minutes in very large problems. Therefore, OpenMDAO’s design does not naturally permit models to re-
configure, i.e., to dynamically change during execution its variable sizes, processor distribution, component hierarchy,
or list of variables.

This paper presented a methodology for enabling reconfiguration in the OpenMDAO framework, and applied
it to enable adaptive refinement in an aircraft mission profile optimization problem. This methodology enables any
component or group of components to reconfigure at any time in the middle of execution, even when they are running in
parallel with other components in the model, in a simulation involving multiple processors. The algorithms presented
in this paper update the affected data structures and parallel communication patterns, and are designed to minimize
the amount of operations that must be repeated from the initial setup process. Benchmarking results with a flexible
toy problem show that reconfiguration takes less than a quarter of the total setup time, demonstrating that using the
new reconfiguration algorithm can be much more efficient than re-initializing an OpenMDAO model with the new
settings, even when that is an option. The results are generated using an early version of OpenMDAO v2, and the
reconfigurability features from this paper will be included with the upcoming release of OpenMDAO v2.

This paper also provided a demonstration of the reconfiguration feature through an adaptive refinement approach
to an aircraft mission profile optimization problem. This problem models the equations of motion for a commercial
aircraft with aerodynamics and propulsion surrogate models embedded. In previous work, the continuous altitude
profile is optimized using a B-spline curve with a fixed number of control points and evaluation points. In this paper,
the reconfigurability feature is used to refine the number of control points and evaluation points—the parametrization
and discretization, respectively—resulting in a reduction in optimization time of about 10 %. Moreover, the profile
optimized without refinement has oscillations, but all profiles optimized with refinement are free of oscillations because
they partially converge first with coarse parametrizations. Since black-box optimizers do not permit changing the set
of design variables or constraints during optimization, a novel bi-level parametrization is used to keep the number
of design variables fixed, but change the number of true degrees of freedom during refinement. This technique is
applicable to all shape and curve optimization problems where an adaptive parametrization is desired with a black-box
optimizer.

The directions for future work consist of adaptive solvers and new applications that are enabled by the ability to
reconfigure models in OpenMDAO. Adaptive time-stepping applications are now possible since a time-stepping com-
ponent or group of components can now reconfigure each time they are evaluated to reflect the variable number of
time steps. Adaptive mesh refinement and adaptive parametrization refinement applications such as the one presented
in this paper are also new problems that can now be solved while still benefiting from the derivative computation and
parallel communication features of OpenMDAO. Reconfigurability also enables adaptive solvers that utilize optimal
groupings of components and their processor distributions, based on the computation times of components in previ-
ous iterations or their coupling structure. The ability to add and remove components during reconfiguration enables
applications such as optimization with overset computational fluid dynamics and multi-fidelity optimization in which
the model switches between sub-models of varying fidelities. Finally, the method used to optimize the aircraft mission
profile using an adaptive parametrization can be applied to any application since it allows the effective parametrization
to be refined without changing the number of design variables or constraints seen by the optimizer.

VI. Acknowledges
This work was supported by the NASA ARMD Transformational Tools and Technologies Project. The author

would also like to acknowledge and thank Justin Gray and the OpenMDAO development team for insightful discus-
sions and their work on OpenMDAO.

15 of 17

American Institute of Aeronautics and Astronautics

References
[1] Burdette, D. A., Kenway, G. K., and Martins, J., “Performance Evaluation of a Morphing Trailing Edge Using Multipoint

Aerostructural Design Optimization,” 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence, 2016, p. 0159.

[2] Hwang, J. T. and Martins, J. R. R. A., “Allocation-mission-design optimization of next-generation aircraft using a paral-
lel computational framework,” 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, San
Diego, CA, Jan 2016.

[3] Hwang, J. T., Lee, D. Y., Cutler, J. W., and Martins, J. R. R. A., “Large-Scale Multidisciplinary Optimization of a Small
Satellite’s Design and Operation,” Journal of Spacecraft and Rockets, Vol. 51, No. 5, September 2014, pp. 1648–1663.
doi:10.2514/1.A32751.

[4] Gray, J., Moore, K. T., and Naylor, B. A., “OpenMDAO: An Open Source Framework for Multidisciplinary Analysis and
Optimization,” Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort Worth, TX,
Sept. 2010, AIAA 2010-9101.

[5] Nardin, L., Srensen, K., Hitzel, S., and Tremel, U., “modeFRONTIER, a Framework for the Optimization of Military Aircraft
Configurations,” MEGADESIGN and MegaOpt - German Initiatives for Aerodynamic Simulation and Optimization in Aircraft
Design, edited by N. Kroll, D. Schwamborn, K. Becker, H. Rieger, and F. Thiele, Vol. 107 of Notes on Numerical Fluid
Mechanics and Multidisciplinary Design, Springer Berlin Heidelberg, 2009, pp. 191–205. doi:10.1007/978-3-642-04093-
1 14.

[6] Balabanov, V., Charpentier, C., Ghosh, D., Quinn, G., Vanderplaats, G., and Venter, G., “VisualDOC: A Software System
for General Purpose Integration and Design Optimization,” 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Atlanta, GA, 2002.

[7] Kolonay, R. M. and Sobolewski, M., “Service ORiented Computing EnviRonment (SORCER) for Large Scale, Distributed,
Dynamic Fidelity Aeroelastic Analysis,” Optimization, International Forum on Aeroelasticity and Structural Dynamics,
IFASD 2011, 26–30, 2011.

[8] Hwang, J. T., A modular approach to large-scale design optimization of aerospace systems, Ph.D. thesis, University of Michi-
gan, 2015.

[9] Gray, J., Hearn, T., Moore, K., Hwang, J. T., Martins, J. R. R. A., and Ning, A., “Automatic Evaluation of Multidisciplinary
Derivatives Using a Graph-Based Problem Formulation in OpenMDAO,” Proceedings of the 15th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference, Atlanta, GA, June 2014. doi:10.2514/6.2014-2042.

[10] Graf, P., Dykes, K., Scott, G., Fields, J., Lunacek, M., Quick, J., and Rethore, P.-E., “Wind Farm Turbine Type and Placement
Optimization,” Journal of Physics: Conference Series, Vol. 753, IOP Publishing, 2016, p. 062004.

[11] Ning, A. and Petch, D., “Integrated design of downwind land-based wind turbines using analytic gradients,” Wind Energy,
2016.

[12] Barlas, A. K., Tibaldi, C., Zahle, F., and Madsen, H. A., “Aeroelastic Optimization of a 10 MW Wind Turbine Blade with
Active Trailing Edge Flaps,” 34th Wind Energy Symposium, 2016, p. 1262.

[13] Leal, P. B., Hartl, D. J., and Bertagne, C. L., “Aero-structural Optimization of Shape Memory Alloy-based Wing Morphing
via a Class/Shape Transformation Approach,” 23rd AIAA/AHS Adaptive Structures Conference, 2015, p. 0731.

[14] Cook, L. W., Jarrett, J. P., and Willcox, K. E., “Horsetail Matching for Optimization Under Probabilistic, Interval and Mixed
Uncertainties,” 19th AIAA Non-Deterministic Approaches Conference, 2017, p. 0590.

[15] Friedman, S., Ghoreishi, S. F., and Allaire, D. L., “Quantifying the Impact of Different Model Discrepancy Formulations in
Coupled Multidisciplinary Systems,” 19th AIAA Non-Deterministic Approaches Conference, 2017, p. 1950.

[16] Kao, J. Y., Hwang, J. T., Martins, J. R. R. A., Gray, J. S., and Moore, K. T., “A modular adjoint approach to aircraft mission
analysis and optimization,” 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Jan 2015.
doi:10.2514/6.2015-0136.

[17] Hwang, J. T., Roy, S., Kao, J. Y., Martins, J. R. R. A., and Crossley, W. A., “Simultaneous aircraft allocation and mission
optimization using a modular adjoint approach,” 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Jan 2015. doi:10.2514/6.2015-0900.

[18] Hwang, J. T. and Martins, J. R. R. A., “Parallel allocation-mission optimization of a 128-route network,” 16th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, Jun 2015.

[19] Roy, S., Moore, K., Hwang, J. T., Gray, J. S., Crossley, W. A., and Martins, J., “A Mixed Integer Efficient Global Optimiza-
tion Algorithm for the Simultaneous Aircraft Allocation-Mission-Design Problem,” 58th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, 2017, p. 1305.

[20] Hearn, T. A., Hendricks, E., Chin, J., and Gray, J. S., “Optimization of Turbine Engine Cycle Analysis with Analytic Deriva-
tives,” 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2016, p. 4297.

16 of 17

American Institute of Aeronautics and Astronautics

http://dx.doi.org/10.2514/1.A32751
http://dx.doi.org/10.1007/978-3-642-04093-1_14
http://dx.doi.org/10.1007/978-3-642-04093-1_14
http://dx.doi.org/10.2514/6.2014-2042
http://dx.doi.org/10.2514/6.2015-0136
http://dx.doi.org/10.2514/6.2015-0900

[21] Gray, J. S., Chin, J., Hearn, T., Hendricks, E. S., Lavelle, T. M., and Martins, J., “Thermodynamics For Gas Turbine Cy-
cles With Analytic Derivatives in OpenMDAO,” 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, 2016, p. 0669.

[22] Ferguson, S., Siddiqi, A., Lewis, K., and de Weck, O. L., “Flexible and reconfigurable systems: Nomenclature and review,”
ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Con-
ference, American Society of Mechanical Engineers, 2007, pp. 249–263.

[23] Sobieszczanski-Sobieski, J., “Sensitivity of Complex, Internally Coupled Systems,” AIAA Journal, Vol. 28, No. 1, 1990,
pp. 153–160. doi:10.2514/3.10366.

[24] Martins, J. R. R. A. and Hwang, J. T., “Review and Unification of Methods for Computing Derivatives of Multidisciplinary
Computational Models,” AIAA Journal, Vol. 51, No. 11, November 2013, pp. 2582–2599. doi:10.2514/1.J052184.

[25] Chauhan, S., Hwang, J., and Martins, J., “Benchmarking approaches for the multidisciplinary analysis of complex systems
using a Taylor series-based scalable problem,” Submitted to the 12th World Congress on Structural and Multidisciplinary
Optimization.

[26] Kreisselmeier, G. and Steinhauser, R., “Systematic Control Design by Optimizing a Vector Performance Index,” International
Federation of Active Controls Syposium on Computer-Aided Design of Control Systems, Zurich, Switzerland, 1979.

[27] Gill, P., Murray, W., and Saunders, M., “SNOPT: An SQP algorithm for large–scale constraint optimization,” SIAM Journal
of Optimization, Vol. 12, No. 4, 2002, pp. 979–1006.

17 of 17

American Institute of Aeronautics and Astronautics

http://dx.doi.org/10.2514/3.10366
http://dx.doi.org/10.2514/1.J052184

	Introduction
	OpenMDAO
	A simple illustrative model
	Monolithic formulation for derivative computation
	Parallel, hierarchical decomposition
	Data structures and setup

	Reconfigurability
	Motivation and applications
	Methodology
	Benchmarking results

	Application: adaptive refinement
	The aircraft mission design problem

	Conclusion
	Acknowledges
	References

